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Abstract

Detecting hidden communities from observed interactions is a classical problem. Theo-
retical analysis of community detection has so far been mostly limited to models with
non-overlapping communities such as the stochastic block model. In this paper, we provide
guaranteed community detection for a family of probabilistic network models with over-
lapping communities, termed as the mixed membership Dirichlet model, first introduced
in Airoldi et al. (2008). This model allows for nodes to have fractional memberships in
multiple communities and assumes that the community memberships are drawn from a
Dirichlet distribution. Moreover, it contains the stochastic block model as a special case.
We propose a unified approach to learning communities in these models via a tensor spectral
decomposition approach. Our estimator uses low-order moment tensor of the observed net-
work, consisting of 3-star counts. Our learning method is based on simple linear algebraic
operations such as singular value decomposition and tensor power iterations. We pro-
vide guaranteed recovery of community memberships and model parameters, and present
a careful finite sample analysis of our learning method. Additionally, our results match the
best known scaling requirements for the special case of the (homogeneous) stochastic block
model.

Keywords: Community detection, spectral methods, tensor methods, moment-based
estimation, mixed membership models.

1. Introduction1

Studying communities forms an integral part of social network analysis. A community
generally refers to a group of individuals with shared interests (e.g. music, sports), or
relationships (e.g. friends, co-workers). Various probabilistic and non-probabilistic network
models attempt to explain community formation. In addition, they also attempt to quantify
interactions and the extent of overlap between different communities, relative sizes among

1Part of this work was done when AA and RG were visiting MSR New England. AA is supported in
part by the NSF Career award CCF-1254106, NSF Award CCF-1219234, AFOSR Award FA9550-10-1-0310
and the ARO Award W911NF-12-1-0404.
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the communities, and various other network properties. Studying such community models
is also of interest in other domains, e.g. in biological networks.

While there exists a vast literature on community models, learning these models is
typically challenging, and various heuristics such as Markov Chain Monte Carlo (MCMC) or
variational expectation maximization (EM) are employed in practice. Such heuristics tend
to be unreliable and scale poorly for large networks. On the other hand, community models
with guaranteed learning methods tend to be restrictive. A popular class of probabilistic
models, termed as the stochastic blockmodels, have been widely studied and enjoy strong
theoretical learning guarantees, e.g. (White et al., 1976; Holland et al., 1983; Fienberg et al.,
1985; Wang and Wong, 1987; Snijders and Nowicki, 1997; McSherry, 2001). However, they
posit that an individual belongs to a single community, which does not hold in most real
settings (Palla et al., 2005).

In this paper, we consider a class of mixed membership community models, originally
introduced by Airoldi et al. (2008), and recently employed by Xing et al. (2010) and Gopalan
et al. (2012). This model has been shown to be effective in many real-world settings, but so
far, no learning approach exists with provable guarantees. In this paper, we provide a novel
learning approach for learning these models and establish regimes where the communities
can be recovered efficiently. The mixed membership community model of Airoldi et al.
(2008) has a number of attractive properties. It retains many of the convenient properties of
the stochastic block model. For instance, conditional independence of the edges is assumed,
given the community memberships of the nodes in the network. At the same time, it allows
for communities to overlap, and for every individual to be fractionally involved in different
communities. It includes the stochastic block model as a special case (corresponding to
zero overlap among the different communities). This enables us to compare our learning
guarantees with existing works for stochastic block models, and also study how the extent
of overlap among different communities affects the learning performance.

1.1. Summary of Results

We now summarize the main contributions of this paper. We propose a novel approach for
learning mixed membership community models of Airoldi et al. (2008). Our approach is a
method-of-moments estimator and incorporates tensor spectral decomposition techniques.
We provide guarantees for our approach under a set of sufficient conditions. Finally, we
compare our results to existing ones for the special case of the stochastic block model, where
nodes belong to a single community.

Learning general mixed membership models: We present a unified approach for the
mixed membership model of Airoldi et al. (2008). The extent of overlap between different
communities in this model class is controlled (roughly) through a single scalar parameter,
termed as the Dirichlet concentration parameter α0 :=

∑
i αi, when the community mem-

bership vectors are drawn from the Dirichlet distribution Dir(α). When α0 → 0, the mixed
membership model degenerates to a stochastic block model. We propose a unified learning
method for the class of mixed membership models. We provide explicit scaling require-
ments in terms of the extent of community overlaps (through α0), the network size n, the
number of communities k, and the average edge connectivity across various communities.
For instance, for the special case, where p is the probability of an intra-community edge,
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and q corresponds to the probability of inter-community connectivity, when the average
community sizes are equal, we require that2

n = Ω̃(k2(α0 + 1)2),
p− q
√
p

= Ω̃

(
(α0 + 1)k

n1/2

)
. (1)

Thus, we require n to be large enough compared to the number of communities k, and for the
separation p−q to be large enough, so that the learning method can distinguish the different
communities. Moreover, we see that the scaling requirements become more stringent as α0

increases. This is intuitive since it is harder to learn communities with more overlap, and we
quantify this scaling. We also quantify the error bounds for estimating various parameters
of the mixed membership model. Lastly, we establish zero-error guarantees for support
recovery: our learning method correctly identifies (w.h.p) all the significant memberships
of a node and also identifies the set of communities where a node does not have a strong
presence.

Learning Stochastic Block Models and Comparison with Previous Results:
For the special case of stochastic block models (α0 → 0), the scaling requirements in (2)
reduces to

n = Ω̃(k2),
p− q
√
p

= Ω̃

(
k

n1/2

)
, (2)

The above requirements match the best known bounds3 (up to poly-log factors), and were
previously achieved by Yudong et al. (2012) via convex optimization. In contrast, we pro-
pose an iterative non-convex approach involving tensor power iterations and linear algebraic
techniques, and obtain similar guarantees for the stochastic block model. For a detailed
comparison of learning guarantees under various methods for learning stochastic block mod-
els, see (Yudong et al., 2012).

Thus, we provide guaranteed recovery of the communities under the mixed membership
model, and our scaling requirements in (1) explicitly incorporate the extent of community
overlaps. Many real-world networks involve sparse community memberships and the total
number of communities is typically much larger than the extent of membership of a single
individual, e.g. hobbies/interests of a person, university/company networks that a person
belongs to, the set of transcription factors regulating a gene, and so on. Thus, we see that
in this regime of practical interest, where α0 = Θ(1), the scaling requirements in (1) match
those of the stochastic block model in (2) (up to polylog factors) without any degradation
in learning performance. Thus, we establish that learning community models with sparse
community memberships is akin to learning stochastic block models, and we present a
unified learning approach and analysis for these models. To the best of our knowledge, this
work is the first to establish polynomial time learning guarantees for probabilistic network
models with overlapping communities, and we provide a fast and an iterative learning
approach through linear algebraic techniques and tensor power iterations.

2The notation Ω̃(·), Õ(·) denotes Ω(·), O(·) up to poly-log factors.
3There are many methods which achieve the best known scaling for n in (2), but have worse scaling for

the separation p− q. This includes variants of the spectral clustering method, e.g. (Chaudhuri et al., 2012).
See (Yudong et al., 2012) for a detailed comparison.
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1.2. Overview of Techniques

We now describe the main techniques employed in our learning approach and in establishing
the recovery guarantees.

Method of moments and subgraph counts: We propose an efficient learning algo-
rithm based on low order moments, viz., counts of small subgraphs. Specifically, we employ
a third-order tensor which counts the number of 3-stars in the observed network. A 3-
star is a star graph with three leaves and we count the occurrences of such 3-stars across
different groups of nodes. We establish that (suitably adjusted) 3-star count tensor has a
simple relationship with the model parameters, when the network is drawn from a mixed
membership community model. In particular, we propose a multi-linear transformation
(termed as whitening) under which the canonical polyadic (CP) decomposition of the tensor
yields the model parameters and the community vectors. Note that the decomposition of a
general tensor into its rank-one components is referred to as its CP decomposition (Kolda
and Bader, 2009) and is in general NP-hard (Hillar and Lim, 2012). However, we reduce
our learning problem to an orthogonal symmetric tensor decomposition, for which tractable
decomposition exists, as described below.

Tensor spectral decomposition via power iterations: Our tensor decomposition
method is based on the popular tensor power iterations, e.g. see (Anandkumar et al., 2012a).
It is a simple iterative method to compute the stable eigen-pairs of a tensor. In this paper,
we propose various modifications to the basic power method to strengthen the recovery
guarantees under perturbations. For instance, we introduce a novel adaptive deflation
techniques. We optimize performance for the regime where the community overlaps are
small.

Sample analysis: We establish that our learning approach correctly recovers the model
parameters and the community memberships of all nodes under exact moments. We then
carry out a careful analysis of the empirical graph moments, computed using the network
observations. We establish tensor concentration bounds and also control the perturbation
of the various quantities used by our learning algorithm via matrix Bernstein’s inequal-
ity (Tropp, 2012, thm. 1.4) and other inequalities. We impose the scaling requirements in
(1) for various concentration bounds to hold.

1.3. Related Work

Many algorithms provide learning guarantees for stochastic block models. A popular
method is based on spectral clustering (McSherry, 2001), where community memberships
are inferred through projection onto the spectrum of the Laplacian matrix (or its variants).
This method is fast and easy to implement (via singular value decomposition). There are
many variants of this method, e.g. the work by Chaudhuri et al. (2012) employs normal-
ized Laplacian matrix to handle degree heterogeneities. In contrast, the work of (Yudong
et al., 2012) uses convex optimization techniques via semi-definite programming learning
block models. For a detailed comparison of learning guarantees under various methods for
learning stochastic block models, see Yudong et al. (2012). Recently, some non-probabilistic
approaches have been introduced with overlapping community models by Arora et al. (2012)
and Balcan et al. (2012). However, their setting is considerably different than the one in this
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paper. We leverage the recent developments from Anandkumar et al. (2012c,a,b) for learn-
ing topic models and other latent variable models based on the method of moments. They
consider learning these models from second- and third-order observed moments through
linear algebraic and tensor-based techniques. We exploit the tensor power iteration method
of Anandkumar et al. (2012b) and provide additional improvements to obtain stronger re-
covery guarantees. Moreover, the sample analysis is quite different in the community setting
compared to other latent variable models analyzed in the previous works.

2. Community Models and Graph Moments

2.1. Community Membership Models

Notation: We consider network with n nodes and let [n] := {1, 2, . . . , n}. Let G be
the {0, 1} adjacency4 matrix for the random network and let GA,B be the submatrix of G
corresponding to rows A ⊆ [n] and columns B ⊆ [n]. For node i, let πi ∈ Rk denote its
community membership vector. Define Π := [π1|π2| · · · |πn] ∈ Rk×n. and let ΠA := [πi : i ∈
A] ∈ Rk×|A| denote the set of column vectors restricted to A ⊆ [n]. For a matrix M , let
(M)i and (M)i denote its ith column and row respectively. For a matrix M with singular
value decomposition (SVD) M = UDV >, let (M)k−svd := UD̃V > denote the k-rank SVD
of M , where D̃ is limited to top-k singular values of M . Let M † denote the MoorePenrose
pseudo-inverse of M . Let I(·) be the indicator function. We use the term high probability
to mean with probability 1− n−c for any constant c > 0.

Mixed membership model: In this model, the community membership vector πu at
node u is a probability vector, i.e.,

∑
i∈[k] πu(i) = 1, for all u ∈ [n]. Given the community

membership vectors, the generation of the edges is as follows: given vectors πu and πv,
the probability of an edge from5 u to v is π>u Pπv, and the edges are independently drawn.
Here, P ∈ [0, 1]k×k and we refer to it as the community connectivity matrix. We consider the
setting of Airoldi et al. (2008), where the community vectors {πu} are i.i.d. draws from the
Dirichlet distribution, denoted by Dir(α), with parameter vector α ∈ Rk>0. The probability
density function is given by

P[π] =

∏k
i=1 Γ(αi)

Γ(α0)

k∏
i=1

παi−1
i , π ∼ Dir(α), α0 :=

∑
i

αi, (3)

where Γ(·) is the Gamma function and the ratio of the Gamma function serves as the
normalization constant.

Let α̂ denote the normalized parameter vector α/α0, where α0 :=
∑

i αi. In particular,
note that α̂ is a probability vector:

∑
i α̂i = 1. Intuitively, α̂ denotes the relative expected

sizes of the communities (since E[n−1
∑

u∈[n] πu[i]] = α̂i). Let α̂max be the largest entry in α̂,
and α̂min be the smallest entry. Our learning guarantees will depend on these parameters.

The stochastic block model is a limiting case of the mixed membership model when the
Dirichlet parameter is α = α0 · α̂, where the probability vector α̂ is held fixed and α0 → 0.

4Our analysis can easily be extended to weighted adjacency matrices with bounded entries.
5We consider directed networks in this paper, but note that the results also hold for undirected commu-

nity models, where P is a symmetric matrix, and an edge (u, v) is formed with probability π>
u Pπv = π>

v Pπu.
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In this case, the community membership vectors πi correspond to coordinate basis vectors.
In the other extreme when α0 → ∞, the Dirichlet distribution becomes peaked around a
single point, for instance, if αi ≡ c and c → ∞, the Dirichlet distribution is peaked at
k−1 ·1, where 1 is the all-ones vector. Thus, the parameter α0 controls the extent of overlap
among different communities.

2.2. Graph Moments Under Mixed Membership Models

Our approach for learning a mixed membership community model relies on the form of the
graph moments6 under the mixed membership model. We now describe the specific graph
moments used by our learning algorithm (based on 3-star and edge counts) and provide
explicit forms for the moments, assuming draws from a mixed membership community
model.

Notations: Recall that G denotes the adjacency matrix, and that GX,A denotes the
submatrix corresponding to edges going from X to A. Recall that P ∈ [0, 1]k×k denotes the
community connectivity matrix. Define

F := Π>P> = [π1|π2| · · · |πn]>P>. (4)

For a subset A ⊆ [n] of individuals, let FA ∈ R|A|×k denote the submatrix of F corresponding
to nodes in A, i.e., FA := Π>AP

>. Let Diag(v) denote a diagonal matrix with diagonal
entries given by a vector v. Our learning algorithm uses moments up to the third-order,
represented as a tensor. A third-order tensor T is a three-dimensional array whose (p, q, r)-
th entry denoted by Tp,q,r. The symbol ⊗ denotes the standard Kronecker product: if u, v,
w are three vectors, then

(u⊗ v ⊗ w)p,q,r := up · vq · wr. (5)

3-star counts: The primary quantity of interest is a third-order tensor which counts the
number of 3-stars. A 3-star is a star graph with three leaves {a, b, c} and we refer to the
internal node x of the star as its “head”, and denote the structure by x → {a, b, c}. We
partition the network into four parts and consider 3-stars such that each node in the 3-star
belongs to a different partition. Consider a partition7 A,B,C,X of the network. We count
the number of 3-stars from X to A,B,C, and our quantity of interest is

TX→{A,B,C} :=
1

|X|
∑
i∈X

[G>i,A ⊗G>i,B ⊗G>i,C ], (6)

where ⊗ is the Kronecker product, defined in (5), and Gi,A is the row vector supported on
the set of neighbors of i belonging to set A. Define

µX→A :=
1

|X|
∑
i∈X

[G>i,A], Gα0
X,A :=

(√
α0 + 1GX,A − (

√
α0 + 1− 1)1µ>X→A

)
. (7)

6We interchangeably use the term first order moments for edge counts and third order moments for
3-star counts.

7For our theoretical guarantees to hold, the partitions A,B,C,X can be randomly chosen and are of
size Θ(n).
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Similarly, we define8 adjusted third-order statistics, Tα0

X→{A,B,C} given by

(α0 + 1)(α0 + 2) TX→{A,B,C}+2α2
0 µX→A ⊗ µX→B ⊗ µX→C

− α0(α0 + 1)

|X|
∑
i∈X

[
G>i,A ⊗G>i,B ⊗ µX→C +G>i,A ⊗ µX→B ⊗G>i,C + µX→A ⊗G>i,B ⊗G>i,C

]
,

(8)

and it reduces to the (scaled version of) 3-star count TX→{A,B,C} defined in (6) for the
stochastic block model (α0 → 0).

Proposition 1 (Moments in Mixed Membership Model) Given partitions A,B,C,X
and Gα0

X,A and Tα0, as in (7) and (8), normalized Dirichlet concentration vector α̂, and

F := Π>P>, where P is the community connectivity matrix and Π is the matrix of commu-
nity memberships, we have

E[(Gα0
X,A)>|ΠA,ΠX ] = FA Diag(α̂1/2)ΨX , (9)

E[Tα0

X→{A,B,C} |ΠA,ΠB,ΠC ] =

k∑
i=1

α̂i(FA)i ⊗ (FB)i ⊗ (FC)i, (10)

where (FA)i corresponds to ith column of FA and ΨX relates to the community membership
matrix ΠX as

ΨX := Diag(α̂−1/2)

(
√
α0 + 1ΠX − (

√
α0 + 1− 1)

(
1

|X|
∑
i∈X

πi

)
1>

)
.

Moreover, we have that
|X|−1EΠX [ΨXΨ>X ] = I. (11)

3. Algorithm for Learning Mixed Membership Models

The simple form of the graph moments derived in the previous section is now utilized to
recover the community vectors Π and model parameters P, α̂ of the mixed membership
model. The method is based on the so-called tensor power method, used to obtain a tensor
decomposition. For a detailed discussion on the tensor power method, see (Anandkumar
et al., 2012b). Below, we discuss the various steps of our algorithm.

Partitioning: We first partition the data into 5 disjoint sets A,B,C,X, Y . The set X is
employed to compute whitening matrices ŴA, ŴB and ŴC , described in detail subsequently,
the set Y is employed to compute the 3-star count tensor Tα0 and sets A,B,C contain the
leaves of the 3-stars under consideration. The roles of the sets can be interchanged to obtain
the community membership vectors of all the sets, as described in Algorithm 1.

8To compute the modified moments Gα0 , and Tα0 , we need to know the value of the scalar α0 :=
∑
i αi,

which is the concentration parameter of the Dirichlet distribution and is a measure of the extent of overlap
between the communities. We assume its knowledge here.
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Algorithm 1 {Π̂, P̂ , α̂} ← LearnMixedMembership(G, k, α0, N, τ)

Input: Adjacency matrix G ∈ Rn×n, k is the number of communities, α0 :=
∑

i αi, where
α is the Dirichlet parameter vector, N is the number of iterations for the tensor power
method, and τ is used for thresholding the estimated community membership vectors,
specified in (42) in assumption A5. Let Ac := [n] \A denote the set of nodes not in A.

Output: Estimates of the community membership vectors Π ∈ Rn×k, community connec-
tivity matrix P ∈ [0, 1]k×k, and the normalized Dirichlet parameter vector α̂.
Partition the vertex set [n] into 5 parts X, Y , A, B, C.
Compute moments Gα0

X,A, Gα0
X,B, Gα0

X,C , Tα0

Y→{A,B,C} using (7) and (8).

{Π̂Ac , α̂} ← LearnPartitionCommunity(Gα0
X,A, Gα0

X,B, Gα0
X,C , Tα0

Y→{A,B,C}, G,N, τ).

Interchange roles9 of Y and A to obtain Π̂Y c .

Define Q̂ such that its i-th row is Q̂i := (α0 + 1) Π̂i

|Π̂i|1
− α0

n 1>.

Estimate P̂ ← Q̂GQ̂>. {Recall that E[G] = Π>PΠ in our model. We will show that
Q̂ ≈ (Π†)>.}
Return Π̂, P̂ , α̂

Whitening: The whitening procedure attempts to convert the 3-star count tensor into
an orthogonal symmetric tensor. Consider the k-rank singular value decomposition (SVD)
of the modified adjacency matrix Gα0 defined in (7),

(|X|−1/2Gα0
X,A)>k−svd = UADAV

>
A .

Define ŴA := UAD
−1
A , and similarly define ŴB and ŴC using the corresponding matrices

Gα0
X,B and Gα0

X,C respectively. Now define

R̂A,B :=
1

|X|
Ŵ>B (Gα0

X,B)>k−svd · (G
α0
X,A)k−svdŴA, (12)

and similarly define R̂AC . The whitened and symmetrized graph-moment tensor is now
computed as

Tα0

Y→{A,B,C}(ŴA, ŴBR̂AB, ŴCR̂AC),

where Tα0 is given by (8) and the above describes a multi-linear transformation of the
tensor.

Tensor power method: It can be shown that the whitening procedure yields a sym-
metric orthogonal tensor under exact moments. We now describe the tensor power method
to recover components of a symmetric orthogonal tensor of the form

T =
∑
i∈[r]

λivi ⊗ vi ⊗ vi =
∑
i∈[r]

λiv
⊗3
i , (13)

where r denotes the tensor rank and we use the notation v⊗3
i := vi ⊗ vi ⊗ vi, and the

vectors vi ∈ Rd are orthogonal to one another. Without loss of generality, we assume that

8
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Procedure 1 {Π̂Ac , α̂} ← LearnPartitionCommunity(Gα0
X,A, Gα0

X,B, Gα0
X,C , Tα0

Y→{A,B,C},

G, N , τ)

Compute rank-k SVD: (|X|−1/2Gα0
X,A)>k−svd = UADAV

>
A and compute whitening matrices

ŴA := UAD
−1
A . Similarly, compute ŴB, ŴC and R̂AB, R̂AC using (35).

Compute whitened and symmetrized tensor T ← Tα0

Y→{A,B,C}(ŴA, ŴBR̂AB, ŴCR̂AC).

{λ̂, Φ̂} ←TensorEigen(T, {Ŵ>AG>i,A}i/∈A, N). {Φ̂ is a k×k matrix with each columns being

an estimated eigenvector and λ̂ is the vector of estimated eigenvalues. {Ŵ>AG>i,A}i/∈A is
the set of initialization vectors and N is the number of iterations.}
Π̂Ac ← Thres(Diag(λ̂)−1Φ̂>Ŵ>AG

>
Ac,A , τ) and α̂i ← λ̂−2

i , for i ∈ [k].

Return Π̂Ac and α̂.

vectors {vi} are orthonormal in this case. In this case, each pair (λi, vi), for i ∈ [r], can be
interpreted as an eigen-pair for the tensor T , since

T (I, vi, vi) =
∑
j∈[r]

λj 〈vi, vj〉2 vj = λivi, ∀i ∈ [r],

due to the fact that 〈vi, vj〉 = δi,j . Thus, the vectors {vi}i∈[r] can be interpreted as fixed
points of the map

v 7→ T (I, v, v)

‖T (I, v, v)‖
, (14)

where ‖ · ‖ denotes the spectral norm (and ‖T (I, v, v)‖ is a vector norm), and is used
to normalize the vector v in (31). Thus, a straightforward approach to computing the
orthogonal decomposition of a symmetric tensor is to iterate according to the fixed-point
map in (31) with an arbitrary initialization vector. This is referred to as the tensor power
iteration method. The simple power iteration procedure is however not sufficient to get
good reconstruction guarantees under empirical moments. We make some modifications
which involve (i) efficient initialization and (ii) adaptive deflation. The details are in the
full version of the paper.

Reconstruction after tensor power method: When exact moments are available,
estimating the community membership vectors Π is straightforward, once we recover all
the stable tensor eigen-pairs, since P ← (Π>)†E[G|Π]Π†. However, in case of empirical
moments, we can obtain better guarantees with the following modification: the estimated
community membership vectors Π̂ are further subject to thresholding so that the weak
values are set to zero. This yields better guarantees in the sparse regime of the Dirichlet
distribution. In addition, we define Q̂ such that its ith row is

Q̂i := (α0 + 1)
Π̂i

|Π̂i|1
− α0

n
1>,

based on estimate Π̂, and the matrix P̂ is obtained as P̂ ← Q̂GQ̂>. We subsequently
establish that Q̂Π̂> ≈ I, under a set of sufficient conditions outlined in the next section.
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Improved support recovery estimates in homophilic models: A sub-class of
community model are those satisfying homophily. Homophily is the tendency to form edges
within the members of the same community, and has been posited as an important factor in
community formation in social networks. We describe a post-processing method in Proce-
dure 3 for models with community connectivity matrix P satisfying P (i, i) ≡ p > P (i, j) ≡ q
for all i 6= j. This yields a set of communities for each node where it has a significant pres-
ence, and we also rule out communities for every node where the presence is not strong
enough.

Procedure 2 {Ŝ} ← SupportRecoveryHomophilicModels(G, k, α0, ξ, Π̂)

Input: Adjacency matrix G ∈ Rn×n, k is the number of communities, α0 :=
∑

i αi, where
α is the Dirichlet parameter vector, ξ is the threshold for support recovery, corresponding
to significant community memberships of an individual. Get estimate Π̂ from Algorithm 1.
Also asume the model is homophilic: P (i, i) ≡ p > P (i, j) ≡ q, for all i 6= j.

Output: Ŝ ∈ {0, 1}n×k is the estimated support for significant community memberships.

Consider partitions A,B,C,X, Y as in Algorithm 1.
Define Q̂ on lines of definition in Algorithm 1, using estimates Π̂. Let the i-th row for

set B be Q̂iB := (α0 + 1)
Π̂iB
|Π̂iB |1

− α0
nB

1>. Similarly define Q̂iC .

Estimate F̂C ← GC,BQ̂
>
B, P̂ ← Q̂C F̂C .

if α0 = 0 (stochastic block model) then
for x ∈ C do

Let i∗ ← arg maxi∈[k] F̂C(x, i) and Ŝ(i∗, x)← 1 and 0 o.w. {Assign community with
maximum average degree.}

end for
else

Let H be the average of diagonals of P̂ , L be the average of off-diagonals of P̂
for x ∈ C, i ∈ [k] do
Ŝ(i, x)← 1 if F̂C(x, i) ≥ L+ (H −L) · 3ξ

4 and zero otherwise.{Identify large entries}
end for

end if
Permute the roles of the sets A,B,C,X, Y to get results for remaining nodes.

4. Sample Analysis for Proposed Learning Algorithm

4.1. Sufficient Conditions and Recovery Guarantees

It is easier to present the guarantees for our proposed algorithm for the special case, where all
the communities have the same expected size, and the entries of the community connectivity
matrix P are equal on diagonal and off-diagonal locations:

α̂i ≡
1

k
, P (i, j) = p · I(i = j) + q · I(i 6= j), p ≥ q. (15)

In other words, the probability of an edge according to P only depends on whether it is
between two individuals of the same community or between different communities. The

10
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above setting is also well studied for stochastic block models (α0 = 0), allowing us to
compare our results with existing ones. The results for general mixed membership models
are available in the full version of the paper (?).

[A1] Sparse regime of Dirichlet parameters: The community membership vectors
are drawn from the Dirichlet distribution, Dir(α), under the mixed membership model.
We assume that αi < 1 for i ∈ [k] αi < 1, which is the sparse regime of the Dirichlet
distribution.

[A2] Condition on the network size: Given the concentration parameter of the
Dirichlet distribution, α0 :=

∑
i αi, we require that

n = Ω̃(k2(α0 + 1)2), (16)

and that the sets A,B,C,X, Y in the partition are Θ(n). Note that from assumption A1,
αi < 1 which implies that α0 < k. Thus, in the worst-case, when α0 = Θ(k), we require10

n = Ω̃(k4), and in the best case, when α0 = Θ(1), we require n = Ω̃(k2). The latter case
includes the stochastic block model (α0 = 0).

[A3] Condition on edge connectivity: Recall that p is the probability of intra-
community connectivity and q is the probability of inter-community connectivity. We re-
quire that

p− q
√
p

= Ω

(
(α0 + 1)k

n1/2

)
(17)

The above condition is on the standardized separation between intra-community and inter-
community connectivity (note that

√
p is the standard deviation of a Bernoulli random

variable). The above condition is required to control the perturbation in the whitened
tensor (computed using observed network samples), thereby, providing guarantees on the
estimated eigen-pairs through the tensor power method.

[A4] Condition on number of iterations of the power method: We assume that
the number of iterations N of the tensor power method satisfies

N ≥ C2 ·
(

log(k) + log log

(
p− q
p

))
, (18)

for some constant C2.

[A5] Choice of τ for thresholding community vector estimates: The threshold τ
for obtaining estimates Π̂ of community membership vectors in Algorithm 1 is chosen as

τ =

Θ

(
k
√
α0√
n
·
√
p

p− q

)
, α0 6= 0, (19)

0.5, α0 = 0, (20)

For the stochastic block model (α0 = 0), since πi is a basis vector, we can use a large
threshold. For general models (α0 6= 0), τ can be viewed as a regularization parameter and

10The notation Ω̃(·), Õ(·) denotes Ω(·), O(·) up to poly-log factors.
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decays as n−1/2 when other parameters are held fixed. We are now ready to state the error
bounds on the estimates of community membership vectors Π and the block connectivity
matrix P . Π̂ and P̂ are the estimates computed in Algorithm 1.

Recall that for a matrix M , (M)i and (M)i denote the ith row and column respectively.
We say that an event holds with high probability, if it occurs with probability 1 − n−c for
some constant c > 0.

Theorem 2 (Guarantees on Estimating P , Π) Under A1-A5, we have w.h.p.

επ,`1 := max
i
‖Π̂i −Πi‖1 = Õ

(
(α0 + 1)3/2√np

(p− q)

)

εP := max
i,j∈[n]

|P̂i,j − Pi,j | = Õ

(
(α0 + 1)3/2k

√
p

√
n

)
.

The proofs are given in the full version of the paper (?). The main ingredient in es-
tablishing the above result is the tensor concentration bound and additionally, recovery
guarantees under the tensor power method. We now provide these results below.

Recall that FA := Π>AP
> and Φ = W>A FA Diag(α̂1/2) denotes the set of tensor eigen-

vectors under exact moments, and Φ̂ is the set of estimated eigenvectors under empirical
moments. We establish the following guarantees.

Lemma 3 (Perturbation bound for estimated eigen-pairs) Under the assumptions
A1-A4, the recovered eigenvector-eigenvalue pairs (Φ̂i, λ̂i) from the tensor power method
satisfies with high probability, for a permutation θ, such that

max
i∈[k]
‖Φ̂i − Φθ(i)‖ ≤ 8k−1/2εT , max

i
|λi − α̂−1/2

θ(i) | ≤ 5εT , (21)

The tensor perturbation bound εT is given by

εT :=
∥∥∥Tα0

Y→{A,B,C}(ŴA, ŴBR̂AB, ŴCR̂AC)− E[Tα0

Y→{A,B,C}(WA, W̃B, W̃C)|ΠA∪B∪C ]
∥∥∥

= Õ

(
(α0 + 1)k3/2√p

(p− q)
√
n

)
, (22)

where ‖T‖ for a tensor T refers to its spectral norm.

Stochastic block models (α0 = 0): For stochastic block models, assumptions A2 and
A3 reduce to

n = Ω̃(k2), ζ = Θ

( √
p

p− q

)
= O

(
n1/2

k

)
. (23)

This matches with the best known scaling (up to poly-log factors), and was previously
achieved via convex optimization by Yudong et al. (2012) for stochastic block models.
However, our results in Theorem 4 do not provide zero error guarantees as in (Yudong
et al., 2012). We strengthen our results to provide zero-error guarantees in Section 3.3.1
below and thus, match the scaling of Yudong et al. (2012) for stochastic block models.
Moreover, we also provide zero-error support recovery guarantees for recovering significant
memberships of nodes in mixed membership models in Section 3.3.1.

12
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Dependence on α0: The guarantees degrade as α0 increases, which is intuitive since
the extent of community overlap increases. The requirement for scaling of n also grows as
α0 increases. Note that the guarantees on επ and εP can be improved by assuming a more
stringent scaling of n with respect to α0, rather than the one specified by A2.

4.1.1. Zero-error guarantees for support recovery

Recall that we proposed Procedure 3 as a post-processing step to provide improved support
recovery estimates. We now provide guarantees for this method. We now specify the
threshold ξ for support recovery in Procedure 3.

[A6] Choice of ξ for support recovery: The threshold ξ in Procedure 3 satisfies

ξ = Ω(εP ),

where εP is specified in Theorem 4. We now state the guarantees for support recovery.

Theorem 4 (Support recovery guarantees) Assuming A1-A6 and (24) hold, the sup-
port recovery method in Procedure 3 has the following guarantees on the estimated support
set Ŝ: with high probability,

Π(i, j) ≥ ξ ⇒ Ŝ(i, j) = 1 and Π(i, j) ≤ ξ

2
⇒ Ŝ(i, j) = 0, ∀i ∈ [k], j ∈ [n], (24)

where Π is the true community membership matrix.

Thus, the above result guarantees that the Procedure 3 correctly recovers all the “large”
entries of Π and also correctly rules out all the “small” entries in Π. In other words, we
can correctly infer all the significant memberships of each node and also rule out the set of
communities where a node does not have a strong presence.

The only shortcoming of the above result is that there is a gap between the “large”
and “small” values, and for an intermediate set of values (in [ξ/2, ξ]), we cannot guarantee
correct inferences about the community memberships. Note this gap depends on εP , the
error in estimating the P matrix. This is intuitive, since as the error εP decreases, we can
infer the community memberships over a large range of values.

For the special case of stochastic block models (i.e. limα0 → 0), we can improve the
above result and give a zero error guarantee at all nodes (w.h.p). Note that we no longer
require a threshold ξ in this case, and only infer one community for each node.

Corollary 5 (Zero error guarantee for block models) Assuming A1-A5 and (24) hold,
the support recovery method in Procedure 3 correctly identifies the community memberships
for all nodes with high probability in case of stochastic block models (α0 → 0).

Thus, with the above result, we match the state-of-art results of Yudong et al. (2012)
for stochastic block models in terms of scaling requirements and recovery guarantees.
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